2012中考数学试题及答案分类汇编:圆
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约4630字。
2012中考数学试题及答案分类汇编:圆
一、选择题
1. (天津3分)已知⊙ 与⊙ 的半径分别为3 cm和4 cm,若 =7 cm,则⊙ 与⊙ 的位置关系是
(A) 相交 (B) 相离 (C) 内切 (D) 外切
【答案】D。
【考点】圆与圆位置关系的判定。
【分析】两圆半径之和3+4=7,等于两圆圆心距 =7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A、相交 B、外切 C、外离 D、内含
【答案】B。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。
∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。故选B。
3,(内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于
A、30° B、60° C、45° D、50°
【答案】
【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC,
∵OC=OA,,PD平分∠APC,
∴∠CPD=∠DPA,∠CAP=∠ACO。
∵PC为⊙O的切线,∴OC⊥PC。
∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。故选C。
4.(内蒙古呼和浩特3分)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为
A. B. C. D.
【答案】B。
【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。
【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF。
根据直径所对圆周角是直角的性质,得∠FDB=90°;
根据圆的轴对称性和DC∥AB,得四边形FBCD是等腰梯形。
∴DF=CB=1,BF=2+2=4。∴BD= 。故选B。
5.(内蒙古呼伦贝尔3分)⊙O1的半径是 ,⊙2的半径是 ,圆心距是 ,则两圆的位置关系为
A. 相交 B. 外切 C.外离 D. 内切
【答案】A。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。由于5-2<4<5+2,所以两圆相交。故选A。
6.(内蒙古呼伦贝尔3分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为.
A. 5 B. 4 C. .3 D. 2
【答案】C。
【考点】垂直线段的性质,弦径定理,勾股定理。
【分析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM长的最小值为点O到弦AB的垂直线段。如图,过点O作OM⊥AB于M,连接OA。
根据弦径定理,得AM=BM=4,在Rt△AOM中,由AM=4, OA=5,根据勾股定理得OM=3,即线段OM长的最小值为3。故选C。
7.(内蒙古呼伦贝尔3分)如图,AB是⊙O的直径,点C、D在⊙O上 ,∠BOD=110°,AC∥OD,则∠AOC的度数