2011年全国各省市中考数学压轴题精选精析
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约31640字。
2011全国各省市中考数学压轴题精选精析(按省市归类)
25、(2011•北京)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.
考点:一次函数综合题;勾股定理;平行四边形的性质;圆周角定理。
专题:综合题;分类讨论。
分析:(1)利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离;
(2)利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值范围即可;
(3)根据平行四边形的性质及其四个顶点均在图形C上,可能会出现四种情况,分类讨论即可.
解答:解:(1)分别连接AD、DB,则点D在直线AE上,
如图1,
∵点D在以AB为直径的半圆上,
∴∠ADB=90°,
∴BD⊥AD,
在Rt△DOB中,由勾股定理得,BD= ,
∵AE∥BF,
∴两条射线AE、BF所在直线的距离为 .
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b= 或﹣1<b<1;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,b的取值范围是1<b<
(3)假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:
①当点M在射线AE上时,如图2.
∵AMPQ四点按顺时针方向排列,
∴直线PQ必在直线AM的上方,
∴PQ两点都在弧AD上,且不与点A、D重合,
∴0<PQ< .
∵AM∥PQ且AM=PQ,
∴0<AM<
∴﹣2<x<﹣1,
②当点M不在弧AD上时,如图3,
∵点A、M、P、Q四点按顺时针方向排列,
∴直线PQ必在直线AM的下方,
此时,不存在满足题意的平行四边形.
③当点M在弧BD上时,
设弧DB的中点为R,则OR∥BF,
当点M在弧DR上时,如图4,
过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.
∴四边形AMPQ为满足题意的平行四边形,
∴0≤x< .
当点M在弧RB上时,如图5,
直线PQ必在直线AM的下方,
此时不存在满足题意的平行四边形.
④当点M在射线BF上时,如图6,
直线PQ必在直线AM的下方,
此时,不存在满足题意的平行四边形.
综上,点M的横坐标x的取值范围是
﹣2<x<﹣1或0≤x< .
点评:本题是一道一次函数的综合题,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.
26、(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点
为 A (1,0),B (1,﹣5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时, ;
(3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.