《从古老的代数书说起》教案1
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约1490字。
从古老的代数书说起-
一元一次方程的讨论(1)(第1课时)
知识技能:1、使学生掌握如何建立刻画实际问题的数学模型-一元一次方程
2、会利用合并同类项解一元一次方程
数学思考:体验用一元一次方程解决实际问题,通过学习合并来解一元一次方程
解决问题:体会解方程中的化归思想,会利用合并解方程,认识如何用方程解决实际问题
情感态度:通过学习“合并”,体会古老的代数书中的“对消”与“还原”的思想,激发数学学习的热情
重点:1、找出相等关系列一元一次方程
2、用“合并”(同类项)等方法解一元一次方程
难点:找出等量关系列一元一次方程,正确地用“合并”的方法解一元一次方
解决实际问题
教学过程:
问题与情境 师生行为 设计意图
[活动1]
练习:
1、 叙述等式的两条的性质。
2、 解方程:
[活动2]
情境导入:约公元825年,中亚细亚数学家阿尔•花拉子米写了一本代数书,重点论述了怎样解方程。这本书的拉丁文译本取名为《对消与还原》。“对消”与“还原”是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。
1、展示问题1某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了X台计算机,已知去年购买数量是前年的2倍,那么去年购买2X台,又今年购买数量是去年的2倍,则今年购买了2*2X(即4X)台。
题中的相等关系为:
前年购买量+去年购买量+今年购买量=140
列方程:
列一元一次方程解应用题的步骤:
1、审题:弄清题意和数量关系;
2、设未知数,找等量关系;
3、由等量关系列出方程;
4、解方程;
5、写出答案(包括单位名称)。
如何解方程?
x+2x+4x=140
合并
7x=140
系数化为1
x=20